1,240 research outputs found

    Sub-Shot-Noise Quantum Optical Interferometry: A Comparison of Entangled State Performance within a Unified Measurement Scheme

    Get PDF
    Phase measurement using a lossless Mach-Zehnder interferometer with certain entangled NN-photon states can lead to a phase sensitivity of the order of 1/N, the Heisenberg limit. However, previously considered output measurement schemes are different for different input states to achieve this limit. We show that it is possible to achieve this limit just by the parity measurement for all the commonly proposed entangled states. Based on the parity measurement scheme, the reductions of the phase sensitivity in the presence of photon loss are examined for the various input states.Comment: 5 pages, 2 figure

    Entanglement-free Heisenberg-limited phase estimation

    Get PDF
    Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At the fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard quantum limit. However, it has long been conjectured that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N. It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N <= 6, but few have surpassed the standard quantum limit and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaev's phase estimation algorithm using adaptive measurement theory to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio

    Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit

    Full text link
    Traditionally, quantum entanglement has played a central role in foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can exhibit results at odds with classical behavior. These discrepancies increase exponentially with the number of entangled particles. When entanglement is extended from just two quantum bits (qubits) to three, the incompatibilities between classical and quantum correlation properties can change from a violation of inequalities involving statistical averages to sign differences in deterministic observations. With the ample confirmation of quantum mechanical predictions by experiments, entanglement has evolved from a philosophical conundrum to a key resource for quantum-based technologies, like quantum cryptography and computation. In particular, maximal entanglement of more than two qubits is crucial to the implementation of quantum error correction protocols. While entanglement of up to 3, 5, and 8 qubits has been demonstrated among spins, photons, and ions, respectively, entanglement in engineered solid-state systems has been limited to two qubits. Here, we demonstrate three-qubit entanglement in a superconducting circuit, creating Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88%, measured with quantum state tomography. Several entanglement witnesses show violation of bi-separable bounds by 830\pm80%. Our entangling sequence realizes the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of encoding, decoding and error-correcting steps in a feedback loop will be the next milestone for quantum computing with integrated circuits.Comment: 7 pages, 4 figures, and Supplementary Information (4 figures)

    The Classical Harmonic Vibrations of the Atomic Centers of Mass with Micro Amplitudes and Low Frequencies Monitored by the Entanglement between the Two Two-level Atoms in a Single mode Cavity

    Full text link
    We study the entanglement dynamics of the two two-level atoms coupling with a single-mode polarized cavity field after incorporating the atomic centers of mass classical harmonic vibrations with micro amplitudes and low frequencies. We propose a quantitative vibrant factor to modify the concurrence of the two atoms states. When the vibrant frequencies are very low, we obtain that: (i) the factor depends on the relative vibrant displacements and the initial phases rather than the absolute amplitudes, and reduces the concurrence to three orders of magnitude; (ii) the concurrence increases with the increase of the initial phases; (iii) the frequency of the harmonic vibration can be obtained by measuring the maximal value of the concurrence during a small time. These results indicate that even the extremely weak classical harmonic vibrations can be monitored by the entanglement of quantum states.Comment: 10 pages, 3 figure

    Chemical Composition and Larvicidal Activities of the Himalayan Cedar, Cedrus deodara Essential Oil and Its Fractions Against the Diamondback Moth, Plutella xylostella

    Get PDF
    Plants and plant-derived materials play an extremely important role in pest management programs. Essential oil from wood chips of Himalayan Cedar, Cedrus deodara (Roxburgh) Don (Pinales: Pinaceae), was obtained by hydrodistillation and fractionated to pentane and acetonitrile from which himachalenes and atlantones enriched fractions were isolated. A total of forty compounds were identified from these fractions using GC and GC-MS analyses. Essential oils and fractions were evaluated for insecticidal activities against second instars of the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae), using a leaf dip method. All samples showed promising larvicidal activity against larvae of P. xylostella. The pentane fraction was the most toxic with a LC50 value of 287 µg/ml. The himachalenes enriched fraction was more toxic (LC50 = 362 µg/ml) than the atlantones enriched fraction (LC50 = 365 µg/ml). LC50 of crude oil was 425 µg/ml and acetonitrile fraction was LC50 = 815 µg/ml. The major constituents, himachalenes and atlantones, likely accounted for the insecticidal action. Present bioassay results revealed the potential for essential oil and different constituents of C. deodara as botanical larvicides for their use in pest management

    Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells

    Get PDF
    The design and analysis of lattice structures manufactured using Additive Manufacturing (AM) technique is a new approach to create lightweight high-strength components. However, it is difficult for engineers to choose the proper unit cell for a certain function structure and loading case. In this paper, three beam-like lattice structures with triangular prism, square prism and hexagonal prism were designed, manufactured by SLM process using AlSi10Mg and tested. The mechanical performances of lattice structures with equal relative density, equal base area and height, and equal length for all unit cells were conducted by Finite Element Analysis (FEA). It was found that effective Young’s modulus is proportional to relative density, but with different affecting levels. When the lattice structures are designed with the same relative density or the same side lengths, the effective Young’s modulus of lattice structure with triangular prism exhibits the maximum value for both cases. When the lattice structures are designed with the same base areas for all unit cells, the effective Young’s modulus of lattice structures with square prism presents the maximum. FEA results also show that the maximum stress of lattice structures with triangular prisms in each comparison is at the lowest level and the stiffness-to-mass ratio remains at the maximum value, showing the overwhelming advantages in terms of mechanical strength. The excellent agreements between numerical results and experimental tests reveal the validity of FEA methods applied. The results in this work provide an explicit guideline to fabricate beam-like lattice structures with the best tensile and bending capabilities

    Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2

    Get PDF
    Small heat shock proteins are ubiquitous in all three domains (Archaea, Bacteria and Eukarya) and possess molecular chaperone activity by binding to unfolded polypeptides and preventing aggregation of proteins in vitro. The functions of a small heat shock protein (S.so-HSP20) from the hyperthermophilic archaeon, Sulfolobus solfataricus P2 have not been described. In the present study, we used real-time polymerase chain reaction analysis to measure mRNA expression of S.so-HSP20 in S. solfataricus P2 and found that it was induced by temperatures that were substantially lower (60°C) or higher (80°C) than the optimal temperature for S. solfataricus P2 (75°C). The expression of S.so-HSP20 mRNA was also up-regulated by cold shock (4°C). Escherichia coli cells expressing S.so-HSP20 showed greater thermotolerance in response to temperature shock (50°C, 4°C). By assaying enzyme activities, S.so-HSP20 was found to promote the proper folding of thermo-denatured citrate synthase and insulin B chain. These results suggest that S.so-HSP20 promotes thermotolerance and engages in chaperone-like activity during the stress response

    The Osteopontin Level in Liver, Adipose Tissue and Serum Is Correlated with Fibrosis in Patients with Alcoholic Liver Disease

    Get PDF
    <div><h3>Background</h3><p>Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis.</p> <h3>Methodology/Principal Findings</h3><p>OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F≥2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F≥2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury.</p> <h3>Conclusion/Significance</h3><p>OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the pathogenesis of this chronic liver disease.</p> </div

    A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients

    Get PDF
    [[abstract]]Background:Human hepatocellular carcinoma (HCC) cells are largely deficient of argininosuccinate synthetase and thus auxotrophic for arginine. This study aims to investigate the efficacy and pharmacodynamics of pegylated arginine deiminase (ADI-PEG 20), a systemic arginine deprivation agent, in Asian HCC patients. Methods:Patients with advanced HCC who were not candidates for local therapy were eligible and randomly assigned to receive weekly intramuscular injections of ADI-PEG 20 at doses of 160 or 320 IU m-2. The primary end point was disease-control rate (DCR). Results:Of the 71 accruals, 43.6% had failed previous systemic treatment. There were no objective responders. The DCR and the median overall survival (OS) of the intent-to-treat population were 31.0% (95% confidence interval (CI): 20.5-43.1) and 7.3 (95% CI: 4.7-9.9) months respectively. Both efficacy parameters were comparable between the two study arms. The median OS of patients with undetectable circulating arginine for more than or equal to and <4 weeks was 10.0 (95% CI: 2.1-17.9) and 5.8 (95% CI: 1.4-10.1) months respectively (P=0.251, log-rank test). The major treatment-related adverse events were grades 1-2 local and/or allergic reactions. Conclusions:ADI-PEG 20 is safe and efficacious in stabilising the progression of heavily pretreated advanced HCC in an Asian population, and deserves further exploration.British Journal of Cancer advance online publication, 31 August 2010; doi:10.1038/sj.bjc.6605856 www.bjcancer.com
    corecore